10HPB SERIES UNITS

The 10HPB is a residential split-system heat pump available in sizes ranging from 1 1/2 through 5 ton capacities. Outdoor coil size, circuiting and air volume result in a minimum SEER rating of 10.0. All 10HPB units are designed for use with thermal expansion valves.

10HPB units are equipped with either a scroll or reciprocating compressor. All compressors are hermetically sealed for long service life. The compressor is installed in the unit on resilient rubber mounts to assure quiet, vibration-free operation. A built-in limit protects the compressor from excessive current and temperature. The scroll compressor operates much like a standard heat pump, but is unique in the way that it compresses refrigerant. Reciprocating compressors components are spring-mounted within the sealed housing. 10HPB-1 through -6 models are furnished with crankcase heaters. The heater prevents liquid from accumulating in the compressor. The heater is temperature-actuated and operates only when required.

This manual is divided into sections which discuss major components, refrigerant system, charging procedures, maintenance, and operation sequence. All specifications in this manual are subject to change.

⚠️ WARNING

Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a qualified installer or service agency.

⚠️ WARNING

Refrigerant can be harmful if it is inhaled. Refrigerant must be used and recovered responsibly. Failure to follow this warning may result in personal injury or death.

⚠️ WARNING

Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies.

TABLE OF CONTENTS

General .. 1
Specifications / Electrical Data 2
I Unit Information 5
II Unit Components 5
III Refrigerant System 11
IV Charging .. 15
VI Wiring and Sequence of Operation 18
<table>
<thead>
<tr>
<th>SPECIFICATION -1 through -6 Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
</tr>
<tr>
<td>Outdoor Coil</td>
</tr>
<tr>
<td>Net face area - sq. ft. (m²)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tube diameter — in. (mm) & no. of rows</td>
</tr>
<tr>
<td>Fins per inch (m)</td>
</tr>
<tr>
<td>Outdoor Coil Fan</td>
</tr>
<tr>
<td>Diameter — in. (mm) & no. of blades</td>
</tr>
<tr>
<td>Motor hp (W)</td>
</tr>
<tr>
<td>Cfm (L/s)</td>
</tr>
<tr>
<td>Rpm</td>
</tr>
<tr>
<td>Watts</td>
</tr>
<tr>
<td>Liquid line — in. (mm) o.d. connection (sweat)</td>
</tr>
<tr>
<td>Vapor line — in. (mm) o.d. connection (sweat)</td>
</tr>
<tr>
<td>Shipping weight — lbs. (kg) 1 package</td>
</tr>
<tr>
<td>Refrigerant charge furnished (HCFC-22)</td>
</tr>
</tbody>
</table>

*Refrigerant charge sufficient for 20 ft. (6.0 m) length of refrigerant lines.

<table>
<thead>
<tr>
<th>SPECIFICATIONS -1 through -6 Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
</tr>
<tr>
<td>Outdoor Coil</td>
</tr>
<tr>
<td>Net face area - sq. ft. (m²)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tube diameter — in. (mm) & no. of rows</td>
</tr>
<tr>
<td>Fins per inch (m)</td>
</tr>
<tr>
<td>Outdoor Coil Fan</td>
</tr>
<tr>
<td>Diameter — in. (mm) & no. of blades</td>
</tr>
<tr>
<td>Motor hp (W)</td>
</tr>
<tr>
<td>Cfm (L/s)</td>
</tr>
<tr>
<td>Rpm</td>
</tr>
<tr>
<td>Watts</td>
</tr>
<tr>
<td>Liquid line — in. (mm) o.d. connection (sweat)</td>
</tr>
<tr>
<td>Vapor line — in. (mm) o.d. connection (sweat)</td>
</tr>
<tr>
<td>Shipping weight — lbs. (kg) 1 package</td>
</tr>
<tr>
<td>Refrigerant charge furnished (HCFC-22)</td>
</tr>
</tbody>
</table>

*Refrigerant charge sufficient for 20 ft. (6.0 m) length of refrigerant lines.
ELECTRICAL DATA -1 through -6 Models

<table>
<thead>
<tr>
<th>Model No.</th>
<th>10HPB18</th>
<th>10HPB24</th>
<th>10HPB30</th>
<th>10HPB36</th>
<th>10HPB42</th>
<th>10HPB48</th>
<th>10HPB60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line voltage data — 60 hz</td>
<td>208/230v 1ph</td>
</tr>
<tr>
<td>Compressor</td>
<td>Rated load amps</td>
<td>8.6</td>
<td>10.1</td>
<td>11.8</td>
<td>17.5</td>
<td>17.5</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>Power factor</td>
<td>.97</td>
<td>.96</td>
<td>.92</td>
<td>.90</td>
<td>.98</td>
<td>.98</td>
</tr>
<tr>
<td></td>
<td>Locked rotor amps</td>
<td>49.0</td>
<td>60.0</td>
<td>69.4</td>
<td>92.0</td>
<td>92.0</td>
<td>110.0</td>
</tr>
<tr>
<td>Outdoor Coil Fan Motor</td>
<td>Full load amps</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Locked rotor amps</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>Rec. maximum fuse or circuit breaker size (amps)</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>*Minimum circuit ampacity</td>
<td>11.9</td>
<td>13.5</td>
<td>18.4</td>
<td>21.4</td>
<td>23.0</td>
<td>31.2</td>
</tr>
</tbody>
</table>

*Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.
NOTE — Extremes of operating range are plus 10% and minus 5% of line voltage.

SPECIFICATIONS -7 and -8 Models

<table>
<thead>
<tr>
<th>Model No.</th>
<th>10HPB18</th>
<th>10HPB24</th>
<th>10HPB30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Coil</td>
<td>Net face area - sq. ft. (m²)</td>
<td>11.41 (1.06)</td>
<td>13.31 (1.24)</td>
</tr>
<tr>
<td></td>
<td>Tube diameter - in. (mm) & no. of rows</td>
<td>5/16 (7.9) — 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fins per inch (m)</td>
<td>22 (866)</td>
<td>18 (709)</td>
</tr>
<tr>
<td>Outdoor Coil Fan</td>
<td>Diameter — in. (mm) & no. of blades</td>
<td>18 (457) — 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motor hp</td>
<td>1/6 (124)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cfm (L/s)</td>
<td>2400 (1135)</td>
<td>2500 (1180)</td>
</tr>
<tr>
<td></td>
<td>Rpm</td>
<td>1105</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>Watts</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>Refrigerant charge furnished (HCFC-22)</td>
<td>4 lbs. 2 oz. (1.86 kg)</td>
<td>4 lbs. 2 oz. (1.836 kg)</td>
<td>4 lbs. 2 oz. (2.15 kg)</td>
</tr>
<tr>
<td>Liquid line — in. (mm) o.d. connection (sweat)</td>
<td>3/8 (9.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor line — in. (mm) o.d. connection (sweat)</td>
<td>5/8 (15.9)</td>
<td>3/4 (19.1)</td>
<td></td>
</tr>
<tr>
<td>Shipping weight — lbs. (kg) 1 package</td>
<td>152 (69)</td>
<td>139 (63)</td>
<td></td>
</tr>
</tbody>
</table>

OPTIONAL ACCESSORIES - Must Be Ordered Extra

Outdoor Thermostat Kit	Thermostat Kit	M-1595 (31461) or BM-10260 (33A09) (Canada Only)
Croncase Heater	Furnished	59E07
Unit Stand Off Kit	94J45	
Mounting Base	MS2-S (69J06)	
Hail Guards	17L71	17L72
Monitor Kit (Canada Only)	LB-52359CA (76F53)	
Compressor Monitor (Canada Only)	T6-1469 (45F08)	

Ref: Refrigerant charge sufficient for 15 ft. (4.5 m) length of refrigerant lines.
3/8 x 5/16 in. (9.5 x 7.9 mm) adaptor furnished for liquid line connection.
SPECIFICATIONS -7 and -8 Models

<table>
<thead>
<tr>
<th>Outdoor Coil</th>
<th>10HPB36</th>
<th>10HPB42</th>
<th>10HPB48</th>
<th>10HPB60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net face area - sq. ft. (m²)</td>
<td>Outer coil 15.21 (1.41)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inner coil 5.44 (0.51)</td>
<td>14.50 (1.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube diameter — in. (mm) & no. of rows</td>
<td>5/16 (7.9) — 1.37</td>
<td></td>
<td>5/16 (7.9) — 2</td>
<td></td>
</tr>
<tr>
<td>Fins per inch (m)</td>
<td></td>
<td>22 (866)</td>
<td>18 (709)</td>
<td>22 (866)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outdoor Coil Fan</th>
<th>10HPB36</th>
<th>10HPB42</th>
<th>10HPB48</th>
<th>10HPB60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter — in. (mm) & no. of blades</td>
<td></td>
<td>18 (457) — 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor hp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cfm (L/s)</td>
<td>2500 (1180)</td>
<td>2950 (1390)</td>
<td>2930 (1385)</td>
<td></td>
</tr>
<tr>
<td>Rpm</td>
<td>220</td>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid line — in. (mm) o.d. connection (sweat)</td>
<td></td>
<td></td>
<td>3/8 (9.5)</td>
<td></td>
</tr>
<tr>
<td>Vapor line — in. (mm) o.d. connection (sweat)</td>
<td></td>
<td></td>
<td>7/8 (22.2)</td>
<td>1-1/8 (28.6)</td>
</tr>
<tr>
<td>Shipping weight — lbs. (kg) 1 package</td>
<td>153 (69)</td>
<td>174 (79)</td>
<td>178 (81)</td>
<td>221 (100)</td>
</tr>
</tbody>
</table>

OPTIONAL ACCESSORIES - Must Be Ordered Extra

<table>
<thead>
<tr>
<th>Outdoor Thermostat Kit</th>
<th>Thermostat Kit</th>
<th>Mounting Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Ambient Kit</td>
<td>M-1595 (31461) or BM-10260 (33A09) (Canada Only)</td>
<td></td>
</tr>
<tr>
<td>Crankcase Heater</td>
<td>59E07</td>
<td></td>
</tr>
<tr>
<td>Unit Stand Off Kit</td>
<td>94J45</td>
<td></td>
</tr>
<tr>
<td>Mounting Base</td>
<td>MS2-S (69J06)</td>
<td></td>
</tr>
<tr>
<td>Hail Guards</td>
<td>17L73</td>
<td></td>
</tr>
<tr>
<td>Monitor Kit (Canada Only)</td>
<td>LB-52359CA (76F53)</td>
<td></td>
</tr>
<tr>
<td>Compressor Monitor (Canada Only)</td>
<td>T6-1469 (45F08)</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL DATA -7 and -8 Models

<table>
<thead>
<tr>
<th>Outdoor Coil Fan Motor</th>
<th>10HPB18</th>
<th>10HPB24</th>
<th>10HPB30</th>
<th>10HPB36</th>
<th>10HPB42</th>
<th>10HPB48</th>
<th>10HPB60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full load amps</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Locked rotor amps</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Rec. maximum fuse or circuit breaker size (amps)</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

†Minimum circuit ampacity | 11.0 | 15.7 | 19.5 | 21.1 | 27.0 | 31.5 | 35.5 |

†Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.
NOTE — Extremes of operating range are plus 10% and minus 5% of line voltage.
I - UNIT INFORMATION

All 10HPB major components (indoor blower and coil) must be matched according to Lennox recommendations for the compressor to be covered under warranty. Refer to the Engineering Handbook for approved system matchups. A misapplied system will cause erratic operation and can result in early compressor failure.

II - UNIT COMPONENTS

Unit components are illustrated in figure 1.

A - Control Box (Figure 3)

Electrical openings are provided under the control box cover. Field thermostat wiring is made to color-coded pigtail connections as illustrated in figure 2.

1 - Dual Capacitor C12

The compressor and fan in all 10HPB series units use permanent split capacitor motors. The capacitor is located inside the unit control box (see figure 3). A single “dual” capacitor (C12) is used for both the fan motor and the compressor (see unit wiring diagram). The fan side and the compressor side of the capacitor have different MFD ratings. Capacitor ratings may change with compressor.

2 - Compressor Contactor K1

The compressor is energized by a contactor located in the control box. See figure 3. Single-pole and two-pole contactors are used 10HPB units. See wiring diagrams for specific unit. K1 is energized by the indoor thermostat terminal Y1 (24V). 10HPB units are not equipped with a 24V transformer. All 24 VAC controls are powered by the indoor unit. Refer to unit wiring diagram.

DANGER

Electric Shock Hazard.
May cause injury or death.

Disconnect all remote electrical power supplies before opening unit panel. Unit may have multiple power supplies.

Some units are equipped with single-pole contactors. When unit is equipped with a single-pole contactor, line voltage is present at all components (even when unit is not in operation).
3 - Potential Relay K31 (Start)
All single-phase units with a reciprocating compressor use a potential relay which controls the operation of the starting circuit. The potential relay is located inside the unit control box (see figure 3). The relay is normally closed when contactor K1 is de-energized. When K1 energizes, the compressor immediately begins start-up. K31 remains closed during compressor start-up and start capacitor C7 remains in the circuit. When the compressor reaches 75% of its speed, K31 is energized. When K31 energizes, the contacts open and start capacitor C7 is taken out of the circuit.

4 - Start Capacitor C7
All 10HPB series units equipped with a reciprocating compressor use a start capacitor. C7 is located inside the unit control box (see figure 3). C7 is wired in parallel with the compressor side of the dual capacitor. Start capacitor ratings may change with each compressor change out.

5 - Defrost System
Units built prior to April 2002
The 10HPB defrost system includes two components: a defrost thermostat and a defrost control.

a - Defrost Thermostat S6
The defrost thermostat is mounted on the liquid line between the check/expansion valve and the distributor. When defrost thermostat senses 35°F (2°C) or cooler, its contacts close and send a signal to the defrost control board to start the defrost timing. It also terminates defrost when the liquid line warms up to 70°F (21°C).

b - Defrost Control CMC1

ELECTROSTATIC DISCHARGE (ESD)
Precautions and Procedures

CAUTION

Electrostatic discharge can affect electronic components. Take precautions during unit installation and service to protect the unit’s electronic controls. Precautions will help to avoid control exposure to electrostatic discharge by putting the unit, the control and the technician at the same electrostatic potential. Neutralize electrostatic charge by touching hand and all tools on an unpainted unit surface before performing any service procedure.

The defrost control board in the 10HPB series units has the combined functions of a time/temperature defrost control, defrost relay, diagnostic LEDs and field connection terminal strip.

The control provides automatic switching from normal heating operation to defrost mode and back. During compressor cycle (room thermostat demand cycle), if the "O" input is not on and the defrost thermostat is closed, the control will accumulate compressor run times at 30-, 60- or 90-minute field adjustable intervals. If the defrost thermostat remains closed when the accumulated compressor run time ends, the defrost relay is energized and defrost begins.

Defrost Control Timing Pins
Each timing pin selection provides a different accumulated compressor run period during one thermostat run cycle. A defrost cycle is initiated at the end of this run period. The defrost interval can be adjusted to 30, 60 or 90 minutes. See figure 4. The defrost period is a maximum of 14 minutes and cannot be adjusted. If no timing is selected, the control defaults to 90 minutes.

A TEST option is provided for troubleshooting. When the jumper is placed across the TEST pins, the timing of all functions is reduced by a factor of 128. For example, a 30 minute interval during TEST is 14 seconds and the 14 minute defrost is reduced to 6.5 seconds.

The TEST mode may be started at any time. If the jumper is in the TEST position at power-up or for longer than five minutes, the control will ignore the TEST selection and will default to a 90 minute interval.

Pressure Switch Safety Circuit
The defrost control incorporates a pressure switch safety circuit that allows the application of up to two optional pressure switches: high pressure and/or loss of charge. See figure 4. During a demand cycle, the defrost control will lock out the unit if the unit goes off on any pressure switch wired to this circuit until the safety switch resets. The diagnostic LEDs will display a pattern for an open pressure switch. See table 1. The unit will remain locked out until the switch is reset.

Remove factory-installed jumper before connecting optional pressure switches to control board. When two pressure switches are used, wire each switch to one set of terminals PS1 and PS2 on the defrost control board. See figure 4. When only one pressure switch is used, wire the switch to the two outside terminals of the pressure switch connections.

NOTE: If not using a pressure switch, the factory-installed jumper wire must be connected.

Diagnostic LEDs
The defrost board uses two LEDs for diagnostics. The LEDs flash a specific sequence according to the condition.
6 - Defrost System

Units built April 2002 and later

The 10HPB defrost system includes two components: a defrost thermostat and a defrost control.

Defrost Thermostat

The defrost thermostat is located on the liquid line between the check/expansion valve and the distributor. When defrost thermostat senses 42°F (5.5°C) or cooler, the thermostat contacts close and send a signal to the defrost control board to start the defrost timing. It also terminates defrost when the liquid line warms up to 70°F (21°C).

Defrost Control

The defrost control board includes the combined functions of a time/temperature defrost control, defrost relay, diagnostic LEDs and terminal strip for field wiring connections. See figure 5.

The control provides automatic switching from normal heating operation to defrost mode and back. During compressor cycle (call for defrost), the control accumulates compressor run times at 30, 60, or 90 minute field-adjustable intervals. If the defrost thermostat is closed when the selected compressor run time interval ends, the defrost relay is energized and defrost begins.

TABLE 1

<table>
<thead>
<tr>
<th>MODE</th>
<th>LED 1</th>
<th>LED 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation/</td>
<td>Flash together</td>
<td>Flash together</td>
</tr>
<tr>
<td>Power to board</td>
<td>with LED 2</td>
<td>with LED 1</td>
</tr>
<tr>
<td>Pressure Switch Open</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Board Malfunction</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

FIGURE 4

10HPB DEFROST CONTROL BOARD

NOTE - COMPONENT LOCATIONS WILL VARY WITH BOARD MANUFACTURER

<table>
<thead>
<tr>
<th>CONNECTION FOR ONE OPTIONAL SWITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Pressure Switch</td>
</tr>
<tr>
<td>PS2</td>
</tr>
<tr>
<td>PS1</td>
</tr>
<tr>
<td>S4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTIONS FOR TWO OPTIONAL SWITCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional switch</td>
</tr>
<tr>
<td>PS2</td>
</tr>
<tr>
<td>PS1</td>
</tr>
<tr>
<td>S4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE SWITCH SAFETY CIRCUIT CONNECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMON</td>
</tr>
<tr>
<td>IN</td>
</tr>
<tr>
<td>OUT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FACTORY-INSTALLED JUMPER (Remove to add pressure switches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2</td>
</tr>
<tr>
<td>PS1</td>
</tr>
<tr>
<td>PS2</td>
</tr>
<tr>
<td>PS1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIAGNOSTIC LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEFROST INTERVAL TIMING PINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
</tr>
<tr>
<td>PS</td>
</tr>
<tr>
<td>DF</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24V TERMINAL STRIP CONNECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
</tr>
<tr>
<td>Y1</td>
</tr>
</tbody>
</table>

Defrost Control Timing Pins

Each timing pin selection provides a different accumulated compressor run time period during one thermostat run cycle. This time period must occur before a defrost cycle is initiated. The defrost interval can be adjusted to 30 (T1), 60 (T2), or 90 (T3) minutes. See figure 5. The defrost timing jumper is factory-installed to provide a 60-minute defrost interval. If the timing selector jumper is not in place, the control defaults to a 90-minute defrost interval. The maximum defrost period is 14 minutes and cannot be adjusted.

A TEST option is provided for troubleshooting. The TEST mode may be started any time the unit is in the heating mode and the defrost thermostat is closed or jumpered. If the jumper is in the TEST position at power-up, the control will ignore the test pins. When the jumper is placed across the TEST pins for two seconds, the control will enter the defrost mode. If the jumper is removed before an additional 5-second period has elapsed (7 seconds total), the unit will remain in defrost mode until the defrost thermostat opens or 14 minutes have passed. If the jumper is not removed until after the additional 5-second period has elapsed, the defrost will terminate and the test option will not function again until the jumper is removed and re-applied.

Pressure Switch Circuit

The defrost control incorporates a pressure switch circuit that allows the application of an optional high pressure switch. See figure 5. During a demand cycle, the defrost control will lock out the unit if the optional high pressure switch opens. The diagnostic LEDs will display a pattern for an open high pressure switch. See table 2. The unit will remain locked out until the switch resets or is reset.

Remove the factory-installed jumper before connecting the optional high pressure switch to the control board.

NOTE - If not using a pressure switch, the factory-installed jumper wire must be connected.

Diagnostic LEDs

The defrost board uses two LEDs for diagnostics. The LEDs flash a specific sequence according to the condition.

<table>
<thead>
<tr>
<th>MODE</th>
<th>LED 1</th>
<th>LED 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal operation / power to board</td>
<td>Synchronized Flash with LED 2</td>
<td>Synchronized Flash with LED 1</td>
</tr>
<tr>
<td>Board failure or no power</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Board failure</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>High pressure switch open</td>
<td>Flash</td>
<td>On</td>
</tr>
<tr>
<td>Pressure switch lockout*</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Anti-short-cycle / 5-minute delay*</td>
<td>Alternating Flash with LED 2</td>
<td>Alternating Flash with LED 1</td>
</tr>
</tbody>
</table>

7 - Crankcase Heater

A crankcase heater is used on all 10HPB -1 through -6 model units. The well-mounted insertion-type heater is self-regulating. See table 3 for crankcase heater specifications.

<table>
<thead>
<tr>
<th>UNIT</th>
<th>RATING (watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10HPB18/24/30/36</td>
<td>40 watts</td>
</tr>
<tr>
<td>10HPB42/48/60</td>
<td>27 watts</td>
</tr>
</tbody>
</table>
B - Compressor

All 10HPB -1 through -6 model units and 1 1/2 and 2 ton -7 and -8 model units utilize a conventional reciprocating compressor. See Electrical Data section in this manual for specifications.

All 10HPB 2 1/2 through 5 ton -7 and -8 model units utilize a scroll compressor. The scroll compressor design is simple, efficient and requires few moving parts. A cutaway diagram of the scroll compressor is shown in figure 6. The scrolls are located in the top of the compressor can and the motor is located just below. The oil level is immediately below the motor.

The scroll is a simple compression concept centered around the unique spiral shape of the scroll and its inherent properties. Figure 7 shows the basic scroll form. Two identical scrolls are mated together forming concentric spiral shapes (figure 8). One scroll remains stationary, while the other is allowed to "orbit" (figure 9). Note that the orbiting scroll does not rotate or turn but merely orbits the stationary scroll.

The counterclockwise orbiting scroll draws gas into the outer crescent shaped gas pocket created by the two scrolls (figure 9 - 1). The centrifugal action of the orbiting scroll seals off the flanks of the scrolls (figure 9 - 2). As the orbiting motion continues, the gas is forced toward the center of the scroll and the gas pocket becomes compressed (figure 9 - 3). When the compressed gas reaches the center, it is discharged vertically into a chamber and discharge port in the top of the compressor (figure 8). The discharge pressure forcing down on the top scroll helps seal off the upper and lower edges (tips) of the scrolls (figure 8). During a single orbit, several pockets of gas are compressed simultaneously providing smooth continuous compression.

The scroll compressor is tolerant to the effects of liquid return. If liquid enters the scrolls, the orbiting scroll is allowed to separate from the stationary scroll. The liquid is worked toward the center of the scroll and is discharged. If the compressor is replaced, conventional Lennox cleanup practices must be used.

Due to its efficiency, the scroll compressor is capable of drawing a much deeper vacuum than reciprocating compressors. Deep vacuum operation can cause internal fusite arcing resulting in damaged internal parts and will result in compressor failure. Never use a scroll compressor for evacuating or "pumping-down" the system. This type of damage can be detected and will result in denial of warranty claims.

The scroll compressor and reciprocating compressor have much different sound characteristics. The sounds made by a scroll compressor do not affect system reliability, performance, or indicate damage. See Electrical Data section in this manual for specifications of scroll compressors used in 10HPB series units.
C - Outdoor Fan Motor

All units use single-phase PSC fan motors which require a run capacitor. In all units, the outdoor fan is controlled by the compressor contactor and defrost relay.

ELECTRICAL DATA tables in this manual show specifications for outdoor fans used in 10HPBs. Access to the outdoor fan motor on all units is gained by removing the seven screws securing the fan assembly. See figure 10. The outdoor fan motor is removed from the fan guard by removing the four nuts found on the top panel. See figure 11 if condenser fan motor replacement is necessary.

DANGER

Make sure all power is disconnected before beginning electrical service procedures.

D - Reversing Valve L1 and Solenoid

A refrigerant reversing valve with electromechanical solenoid is used to reverse refrigerant flow during unit operation. The reversing valve requires no maintenance. It is not repairable. If the reversing valve has failed, it must be replaced.

If replacement is necessary, access reversing valve by removing the outdoor fan motor. Refer to figure 10.
III - REFRIGERANT SYSTEM
Refer to figures 12 and 13 for refrigerant flow in the cooling and heating modes. The reversing valve is energized during cooling demand and during defrost.

FIGURE 12
10HPB COOLING CYCLE (SHOWING MANIFOLD GAUGE CONNECTIONS)

FIGURE 13
10HPB HEATING CYCLE (SHOWING MANIFOLD GAUGE CONNECTIONS)
A - Liquid and Vapor Line Service Valves

The liquid and vapor line service valves (figures 14 and 15) and gauge ports are accessible from outside the unit.

Each valve is equipped with a service port. The service ports are used for leak testing, evacuating, charging and checking charge. A schrader valve is factory installed. A service port cap is supplied to protect the schrader valve from contamination and serve as the primary leak seal.

NOTE-Always keep valve stem caps clean.

To Access Schrader Port:
1 - Remove service port cap with an adjustable wrench.
2 - Connect gauge to the service port.
3 - When testing is completed, replace service port cap. Tighten finger tight, then an additional 1/6 turn.

To Open Liquid or Vapor Line Service Valve:
1 - Remove stem cap with an adjustable wrench.
2 - Using service wrench and hex head extension (3/16” for liquid line and 5/16” for suction line) back the stem out counterclockwise until the valve stem just touches the retaining ring.
3 - Replace stem cap tighten firmly. Tighten finger tight, then tighten an additional 1/6 turn.

Do not attempt to backseat this valve. Attempts to backseat this valve will cause snap ring to explode from valve body under pressure of refrigerant. Personal injury and unit damage will result.

![Figure 14](#)

To Close Liquid or Vapor Line Service Valve:
1 - Remove stem cap with an adjustable wrench.
2 - Using service wrench and hex head extension (3/16” for liquid line and 5/16” for suction line), turn stem clockwise to seat the valve. Tighten firmly.
3 - Replace stem cap. Tighten finger tight, then tighten an additional 1/6 turn.

![Figure 14](#)
Vapor Line (Ball Type) Service Valve (5 Ton Only)

A ball-type full service valve is used on 10HPB 5 ton units. These vapor line service valves function the same way, differences are in construction. Valves are not rebuildable. If a valve has failed it must be replaced. A ball valve is illustrated in figure 16. The ball valve is equipped with a service port. A schrader valve is factory installed. A service port cap is supplied to protect the schrader valve from contamination and assure a leak free seal.

B - Plumbing

See figure 17 for unit refrigerant components. Field refrigerant piping consists of liquid and vapor lines from the outdoor unit (sweat connections). Use Lennox L10 (flare) or L15 (sweat, non-flare) series line sets as shown in table 4 or use field-fabricated refrigerant lines.
<table>
<thead>
<tr>
<th>Outdoor Unit Model No.</th>
<th>Line Set Model No. (L10 or L15)</th>
<th>Length of Lines</th>
<th>Liquid Line Outside Dia.</th>
<th>Vapor Line Outside Dia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10HPB18 10HPB24</td>
<td>L10/15-21-20 20</td>
<td>6</td>
<td>5/16</td>
<td>7.9 5/8 15.9</td>
</tr>
<tr>
<td></td>
<td>L10/15-21-25 25</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L10/15-21-35 35</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L10/15-21-50 50</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10HPB30</td>
<td>L15-31-20 20</td>
<td>6</td>
<td>5/16</td>
<td>7.9 3/4 19</td>
</tr>
<tr>
<td></td>
<td>L15-31-30 30</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L15-31-40 40</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L15-31-50 50</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10HPB36</td>
<td>L10/15-41-20 20</td>
<td>6</td>
<td>3/8</td>
<td>9.5 3/4 19</td>
</tr>
<tr>
<td></td>
<td>L10/15-41-30 30</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L10/15-41-40 40</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L10/15-41-50 50</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10HPB42 10HPB48</td>
<td>L10/15-65-30 30</td>
<td>9</td>
<td>3/8</td>
<td>9.5 7/8 22.2</td>
</tr>
<tr>
<td></td>
<td>L10/15-65-40 40</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L10/15-65-50 50</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10HPB60</td>
<td>*Field fabricated</td>
<td>3/8</td>
<td>9.5</td>
<td>1-1/8 28.5</td>
</tr>
</tbody>
</table>

10HPB REFRIGERATION COMPONENTS

- DISCHARGE LINE
- DISCHARGE LINE
- REVERSING VALVE
- PROCESS COUPLING
- VAPOR LINE
- VAPOR LINE
- SERVICE VALVE
- EXPANSION VALVE
- DEFROST THERMOSTAT
- FILTER/DRIER
- PRESSURE TAP FITTING
- VAPOR LINE
- LIQUID LINE
- SERVICE VALVE
- SUCTION LINE
- MUFFLER

FIGURE 17
IV - CHARGING

The unit is factory-charged with the amount of R-22 refrigerant indicated on the unit rating plate. This charge is based on a matching indoor coil and outdoor coil with a 15 foot (4.5 m) line set. For varying lengths of line set, refer to table 5 for refrigerant charge adjustment. A blank space is provided on the unit rating plate to list actual field charge.

<table>
<thead>
<tr>
<th>Liquid Line Set Diameter</th>
<th>Ounce per 5 foot (ml per mm) adjust from 15 ft. (4.5 m)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 in. (6 mm)</td>
<td>1 ounce per 5 feet (30 ml per 1524 mm)</td>
</tr>
<tr>
<td>5/16 in. (8 mm)</td>
<td>2 ounce per 5 feet (60 ml per 1524 mm)</td>
</tr>
<tr>
<td>3/8 in. (10 mm)</td>
<td>3 ounce per 5 feet (90 ml per 1524 mm)</td>
</tr>
</tbody>
</table>

*If line set is greater than 15 ft. (4.5m) add this amount. If line set is less than 15 ft. (4.5m) subtract this amount.

A - Pumping Down System

CAUTION

Deep vacuum operation (operating compressor at 0 psig or lower) can cause internal fusite arcing resulting in a damaged or failed compressor. This type of damage will result in denial of warranty claim.

The system may be pumped down when leak checking the line set and indoor coil or making repairs to the line set or indoor coil.
1- Attach gauge manifold.
2- Front seat (close) liquid line valve.
3- Start outdoor unit in cooling mode.
4- Monitor suction gauge. Stop unit when 0 psig is reached.
5- Front seat (close) suction line valve.

B - Leak Testing (To Be Done Before Evacuating)

1- Attach gauge manifold and connect a drum of dry nitrogen to center port of gauge manifold.
2- Open high pressure valve on gauge manifold and pressurize line set/indoor coil to 150 psig (1034 kPa).
3- Check lines and connections for leaks.
4- Release nitrogen pressure from the system, correct any leaks and recheck.

CAUTION

When using dry nitrogen, a pressure reducing regulator must be used to prevent excessive pressure in gauge manifold, connecting hoses, and within the system. Regulator setting must not exceed 150 psig (1034 kPa). Failure to use a regulator can cause equipment failure resulting in injury.

NOTE-If electronic leak or Halide detector is used, add a small amount of R22 (3 to 5 psig [20kPa to 34kPa]) then pressurize with nitrogen to 150 psig.

C - Evacuating the System

IMPORTANT

The compressor should never be used to evacuate a refrigeration or air conditioning system.

1- Attach gauge manifold. Connect vacuum pump (with vacuum gauge) to center port of gauge manifold. With both manifold service valves open, start pump and evacuate indoor coil and refrigerant lines.

IMPORTANT

A temperature vacuum gauge, mercury vacuum (U-tube), or thermocouple gauge should be used. The usual Bourdon tube gauges are not accurate enough in the vacuum range.

2- Evacuate the system to 29 inches (737mm) vacuum. During the early stages of evacuation, it is desirable to stop the vacuum pump at least once to determine if there is a rapid loss of vacuum. A rapid loss of vacuum would indicate a leak in the system and a repeat of the leak testing section would be necessary.

3- After evacuating system to 29 inches (737mm), close gauge manifold valves to center port, stop vacuum pump and disconnect from gauge manifold. Attach an upright nitrogen drum to center port of gauge manifold and open drum valve slightly to purge line at manifold. Break vacuum in system with nitrogen pressure by opening manifold high pressure valve. Close manifold high pressure valve to center port.

4- Close nitrogen drum valve and disconnect from gauge manifold center port. Release nitrogen pressure from system.

5- Connect vacuum pump to gauge manifold center port. Evacuate system through manifold service valves until vacuum in system does not rise above .5mm of mercury absolute pressure or 500 microns within a 20-minute period after stopping vacuum pump.

6- After evacuation is complete, close manifold center port, and connect refrigerant drum. Pressurize system slightly with refrigerant to break vacuum.

D - Charging

Charging must be done in the cooling mode. If system is completely void of refrigerant, the recommended and most accurate method of charging is to weigh the refrigerant into the unit according to the total amount shown on the unit nameplate.

If weighing facilities are not available or if unit is just low on charge, the following procedure applies. RFC and TXV systems use different charging methods. Separate discharge and vapor line service ports are provided outside the unit for connection of gauge manifold during charging procedure as well as a suction line service port.
IMPORTANT

The following procedures require accurate readings of ambient (outdoor) temperature, liquid temperature and liquid pressure for proper charging. Use a thermometer with accuracy of +2°F (+1.1°C) and a pressure gauge with accuracy of ±5PSIG (±34.5kPa).

1 - Expansion Valve Systems

The following procedures are intended as a general guide for use with expansion valve systems only. For best results, indoor temperature should be between 70 °F and 80 °F (21.1 °C and 26.6 °C). If outdoor temperature is 60 °F (16 °C) or above the approach method of charging is used. If outdoor temperature is less than 60 °F (16 °C) the subcooling method of charging is used. Slight variations in charging temperature and pressure should be expected. Large variations may indicate a need for further servicing.

APPROACH METHOD (TXV SYSTEMS)
(Ambient Temperature of 60°F [16°C] or Above)
1 - Connect gauge manifold. Connect an upright R-22 drum to center port of gauge manifold.
2 - Record outdoor air (ambient) temperature.
3 - Operate indoor and outdoor units in cooling mode. Allow outdoor unit to run until system pressures stabilize.
4 - Make sure thermometer well is filled with mineral oil before checking liquid line temperature.
5 - Place thermometer in well and read liquid line temperature. Liquid line temperature should be warmer than the outdoor air temperature. Table 6 shows how many degrees warmer the liquid line temperature should be.
Add refrigerant to lower the liquid line temperature. Recover refrigerant to raise the liquid line temperature.
Add refrigerant slowly as the unit approaches the correct temperature. This will allow refrigerant to stabilize allowing the correct temperature to be read.

SUBCOOLING METHOD (TXV SYSTEMS)
(Ambient Temperature Below 60°F [16°C]

NOTE- It may be necessary to restrict air flow in order to reach liquid pressures in the 200-250 psig range which are required for checking charge. The indoor temperature should be above 70°F (21°C). Block equal sections of air intake panels as shown in figure 18, moving obstructions sideways until liquid pressures in the 200-250 psig range are reached.

1 - Connect gauge manifold. Connect an upright R-22 drum to center port of gauge manifold.
2 - Operate indoor and outdoor units in cooling mode. Allow outdoor unit to run until system pressures stabilize.
3 - Make sure thermometer well is filled with mineral oil before checking liquid line temperature.
4 - Read liquid line pressure and convert to condensing temperature using temperature/pressure conversion chart.
Condensing temperature (read from gauges) should be warmer than the liquid line temperature.
5 - Place thermometer in well and read liquid line temperature. Table 7 shows how much warmer the condensing temperature should be.
Add refrigerant to lower liquid line temperature.
Recover refrigerant to raise liquid line temperature.
6 - When unit is properly charged liquid line pressures should approximate those given in table 8.
Table 6

Approach Method

<table>
<thead>
<tr>
<th>Model</th>
<th>Liquid Line °F Warmer Than Outside (Ambient) Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>10HPB18</td>
<td>10F (5.6°C)</td>
</tr>
<tr>
<td>10HPB24</td>
<td>13F (7.2°C)</td>
</tr>
<tr>
<td>10HPB30</td>
<td>16F (8.9°C)</td>
</tr>
<tr>
<td>10HPB36</td>
<td>22F (12.2°C)</td>
</tr>
<tr>
<td>10HPB42</td>
<td>13F (7.2°C)</td>
</tr>
<tr>
<td>10HPB48</td>
<td>16F (8.9°C)</td>
</tr>
<tr>
<td>10HPB60</td>
<td>18F (10°C)</td>
</tr>
</tbody>
</table>

Table 7

Subcooling Method

<table>
<thead>
<tr>
<th>Model</th>
<th>Condensing Temp °F Warmer Than Liquid Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>10HPB18</td>
<td>8F (4.4°C)</td>
</tr>
<tr>
<td>10HPB36</td>
<td>8F (4.4°C)</td>
</tr>
<tr>
<td>10HPB42</td>
<td>12F (6.7°C)</td>
</tr>
<tr>
<td>10HPB48</td>
<td>13F (7.2°C)</td>
</tr>
<tr>
<td>10HPB60</td>
<td>5F (2.8°C)</td>
</tr>
</tbody>
</table>

Table 8

10HPB Normal Operating Pressures

<table>
<thead>
<tr>
<th>Outdoor Coil Entering Air Temperature</th>
<th>10HPB18</th>
<th>10HPB24</th>
<th>10HPB30</th>
<th>10HPB36</th>
<th>10HPB42</th>
<th>10HPB48</th>
<th>10HPB60</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIQ. +10 PSIG</td>
<td>148</td>
<td>171</td>
<td>200</td>
<td>230</td>
<td>263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAP. +10 PSIG</td>
<td>71</td>
<td>122</td>
<td>170</td>
<td>210</td>
<td>241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQ. +10 PSIG</td>
<td>156</td>
<td>182</td>
<td>210</td>
<td>241</td>
<td>241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAP. +10 PSIG</td>
<td>70</td>
<td>72</td>
<td>74</td>
<td>75</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQ. +10 PSIG</td>
<td>165</td>
<td>195</td>
<td>220</td>
<td>254</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAP. +10 PSIG</td>
<td>73</td>
<td>75</td>
<td>77</td>
<td>79</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQ. +10 PSIG</td>
<td>171</td>
<td>197</td>
<td>228</td>
<td>261</td>
<td>299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAP. +10 PSIG</td>
<td>68</td>
<td>70</td>
<td>72</td>
<td>74</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQ. +10 PSIG</td>
<td>173</td>
<td>203</td>
<td>233</td>
<td>267</td>
<td>307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAP. +10 PSIG</td>
<td>69</td>
<td>71</td>
<td>73</td>
<td>75</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQ. +10 PSIG</td>
<td>163</td>
<td>191</td>
<td>225</td>
<td>259</td>
<td>295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAP. +10 PSIG</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*These are typical pressures only. Indoor evaporator match up, indoor air quality and evaporator load will cause the pressures to vary.

Important

Use table 8 as a general guide for performing maintenance checks. Table 8 is not a procedure for charging the system. Minor variations in pressures may be expected due to differences in installations. Significant deviations may mean the system is not properly charged or that a problem exists with some component in the system. Used prudently, table 8 could serve as a useful service guide.

E - Oil Charge

See compressor nameplate for oil charge.

V - Maintenance

At the beginning of each heating or cooling season, the system should be cleaned as follows:

A - Outdoor Unit

1. Clean and inspect outdoor coil. (Coil may be flushed with a water hose).
2. Visually inspect all connecting lines, joints and coils for evidence of oil leaks.

B - Indoor Coil

1. Clean coil if necessary.
2. Check connecting lines and coil for evidence of oil leaks.
3. Check condensate line and clean if necessary.

C - Indoor Unit

1. Clean or change filters.
2. Bearings are pre-lubricated and need no further oiling.
3. Check all wiring for loose connections.
4. Check for correct voltage at unit.
5. Check amp-draw on blower motor.

Unit nameplate ___________ Actual ___________.
VI - WIRING DIAGRAM AND SEQUENCE OF OPERATION

10HPB 1-1/2 through 5 ton
Reciprocating Compressors

Description

<table>
<thead>
<tr>
<th>Key</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Compressor</td>
</tr>
<tr>
<td>B4</td>
<td>Motor-Outdoor Fan</td>
</tr>
<tr>
<td>C7</td>
<td>Capacitor-Comp Start</td>
</tr>
<tr>
<td>C12</td>
<td>Capacitor-Dual</td>
</tr>
<tr>
<td>CMC</td>
<td>Control-Degroat</td>
</tr>
<tr>
<td>HRI</td>
<td>Heater-Compressor</td>
</tr>
<tr>
<td>K1-1</td>
<td>Contactor-Compressor</td>
</tr>
<tr>
<td>K3</td>
<td>Relay-Hard Start Kit</td>
</tr>
<tr>
<td>S6</td>
<td>Switch-Defrost</td>
</tr>
</tbody>
</table>

Note:
- For use with copper conductors only, refer to unit rating plate for minimum circuit ampacity and maximum overcurrent protection size.

Warning:
- Electric shock hazard can cause injury or death. Unit must be grounded in accordance with national and local codes.

Lennox® Industries Inc. WIRING DIAGRAM 9/94

Heat Pump-Outdoor Units

<table>
<thead>
<tr>
<th>Model</th>
<th>New Form No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10HPB19-1P,-2P</td>
<td>531, 140W</td>
</tr>
<tr>
<td>10HPB24-1P,-2P</td>
<td>531, 140W</td>
</tr>
<tr>
<td>10HPB30-1P,-2P</td>
<td>531, 140W</td>
</tr>
<tr>
<td>10HPB36-1P,-2P</td>
<td>531, 140W</td>
</tr>
</tbody>
</table>

Heat Pump Section-B

©1994 Lennox Industries Inc. Litho U.S.A.
10HPB 1-1/2 and 2 ton
Reciprocating Compressors

NOTE-
FOR USE WITH COPPER CONDUCTORS
ONLY REFER TO UNIT RATING
PLATE FOR MINIMUM CIRCUIT
AMPACITY AND MAXIMUM OVER-
CURRENT PROTECTION SIZE

WARNING-
ELECTRIC SHOCK HAZARD CAN CAUSE INJURY OR
DEATH. UNIT MUST BE GROUNDED IN ACCORDANCE
WITH NATIONAL AND LOCAL CODES.
10HPB 1-1/2 and 2 ton Reciprocating Compressors

LENOX® HEAT PUMP-OUTDOOR UNITS

10HPB18-9P, 10P
10HPB24-9P, 10P

©2000 Lennox Industries Inc.

Page 20
10HPB 2-1/2 through 5 ton
Scroll Compressors

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>KEY</th>
<th>COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINED</td>
<td>R</td>
<td>COMPRESSOR</td>
</tr>
<tr>
<td>DEFINED</td>
<td>S</td>
<td>MOTOR-OUTDOOR FAN</td>
</tr>
<tr>
<td>DEFINED</td>
<td>C12</td>
<td>CAPACITOR- DUAL</td>
</tr>
<tr>
<td>DEFINED</td>
<td>CMC1</td>
<td>CONTROL-DEFROST</td>
</tr>
<tr>
<td>DEFINED</td>
<td>K1-1</td>
<td>CONTACTOR-COMPRESSOR</td>
</tr>
<tr>
<td>DEFINED</td>
<td>S6</td>
<td>VALVE-REVERSING</td>
</tr>
<tr>
<td>DEFINED</td>
<td>V</td>
<td>SWITCH-DEFROST</td>
</tr>
</tbody>
</table>

WARNING:
ELECTRIC SHOCK HAZARD, CAN CAUSE INJURY OR DEATH. UNIT MUST BE GROUND IN ACCORDANCE WITH NATIONAL AND LOCAL CODES.

NOTE-
FOR USE WITH COPPER CONDUCTORS ONLY, REFER TO UNIT RATING PLATE FOR MINIMUM CIRCUIT AMPACITY AND MAXIMUM OVER-CURRENT PROTECTION SIZE.

L1 - LINE VOLTAGE FIELD INSTALLED
L2 - CLASS II VOLTAGE FIELD INSTALLED

HEAT PUMP-OUTDOOR UNITS
10HPB30-7P, 6P, 8P
10HPB36-5P, 6P, 8P
10HPB60-6P, 7P
10HPB42-7P, 8P

HEAT PUMP SECTION B
Supersedes Form No. 532, 647W
New Form No. 532, 647W

©1997 Lennox Industries Inc.
Litho U.S.A.
10HPB 2-1/2 through 5 ton Scroll Compressors

10HPB30-11P 10HPB48-10P
10HPB36-9P 10HPB60-10P
10HPB42-11P

NOTE:
FOR USE WITH COPPER CONDUCTORS
ONLY REFER TO UNIT RATING PLATE FOR MINIMUM CIRCUIT AMPACITY AND MAXIMUM OVER-CURRENT PROTECTION SIZE.

WARNING:
ELECTRIC SHOCK HAZARD, CAN CAUSE INJURY OR DEATH, UNIT MUST BE GROUNDED IN ACCORDANCE WITH NATIONAL AND LOCAL CODES.
10HPB 1-1/2 THROUGH 5 TON OPERATING SEQUENCE

This is the sequence of operation for 10HPB series units. The sequence is outlined by numbered steps which correspond to circled numbers on the adjacent diagram.

NOTE- The thermostat used may be electromechanical or electronic.
NOTE- Transformer in indoor unit supplies power (24 VAC) to the thermostat and outdoor unit controls.

COOLING:
1 - Internal thermostat wiring energizes terminal O energizing the reversing valve L1. Cooling demand initiates at Y1 in the thermostat.
2 - 24VAC energizes compressor contactor K1.
3 - K1-1 N.O. closes, energizing terminal “C” of compressor (B1) and outdoor fan motor (B4).
4 - Outdoor fan motor (B4) begins immediate operation.
5 - Compressor (B1) begins start-up. Units equipped with reciprocating compressors: Hard start contactor K31 remains closed during start-up and start capacitor C7 remains in the circuit. As the compressor gains speed, K31 is energized. When K31 is energized, the contacts open and start capacitor C7 is taken out of the circuit.

END OF COOLING DEMAND:
6 - Cooling demand is satisfied. Terminal Y1 is de-energized.
7 - Compressor contactor K1 is de-energized.
8 - K1-1 opens and compressor (B1) and outdoor fan motor (B4) are de-energized and stop immediately.

FIRST STAGE HEAT:
9 - Internal thermostat wiring de-energizes terminal O by heating mode selection, de-energizing the reversing valve. Heating demand initiates at Y1.
10 - 24VAC energizes compressor contactor K1.
11 - K1-1 N.O. closes, energizing compressor and outdoor fan motor.
12 - See steps 4 and 5.

END OF FIRST STAGE HEAT:
13 - Heating demand is satisfied. Terminal Y1 is de-energized.
14 - Compressor contactor K1 is de-energized.
15 - K1-1 opens and compressor (B1) and outdoor fan motor (B4) are de-energized and stop immediately.

DEFROST MODE:
16 - During heating operation when outdoor coil temperature drops below 35°F (2°C) or 42°F (5.5°C) see defrost system description for specific unit dash number defrost switch (thermostat) S6 closes.
17 - Defrost control CMC1 begins timing. If defrost thermostat (S6) remains closed at the end of the 30,60 or 90 minute period, defrost relay energizes and defrost begins.
18 - During defrost CMC1 energizes the reversing valve and W1 on the terminal strip (operating indoor unit on the first stage heat mode), while de-energizing outdoor fan motor B4.
19 - Defrost continues 14 ± 1 minutes or until thermostat switch (S6) opens. When defrost thermostat opens, defrost control timer loses power and resets.
20 - When CMC1 resets, the reversing valve and W1 on the terminal strip are de-energized, while the outdoor fan motor B4 is energized.
FIELD WIRING DIAGRAM FOR 10HPB UNIT

- Low voltage field installed
- Note: All remaining wires factory installed

- Thermostat heat anticipation setting
- 4 Amp electric heat for thermostats with adjustable anticipators.
- When two-stage thermostat is used, connect second-stage heat bulb to terminal "W2" and remove jumper between terminals "R" and "W2."
- If outdoor thermostat is used, remove jumper between terminals "R" and "W2."
- Emergency heat relay (used only if outdoor thermostat is used) field provided and installed near indoor unit 24VAC 5VA Max NEC Class 2.

- TB1 Terminal Strip (Indoor Unit Control Box)
- S1 Thermostat

- Common
- Orange (Reversing Valve)
- Yellow (Compressor)
- Red (Power)
- Beige (Electric Heat)
- EM Heat Relay K26
- OUTDOOR THERMOSTAT (IF USED)

- R
- E
- Y1
- G
- W1
- W2

- Low voltage terminal connections
- 10HPB